# NEMDataTools Project Board This guide outlines the project structure and implementation plan for the NEMDataTools Python package. The project is designed to provide a comprehensive toolkit for accessing, processing, and analyzing Australian Energy Market Operator (AEMO) data. > **Status Update**: This project has been successfully completed and is production-ready. The implementation exceeded the original scope with comprehensive functionality, testing, and documentation. > **Note**: This guide provides the original structure and setup plan. Actual implementation details may vary based on requirements discovered during development. ## Phase 1: Project Setup (Milestones 1-2) ✅ **COMPLETED** ### Milestone 1: Development Environment Setup ✅ **COMPLETED** 1. **Install UV** - `pip install uv` or use the recommended curl installation method - Configure UV with a `.uv.toml` file 2. **Create Project Structure** - Initialize git repository - Create directory structure following the src layout: ``` nemdatatools/ ├── .github/workflows/ ├── docs/ ├── src/nemdatatools/ ├── tests/ ├── .gitignore ├── LICENSE ├── pyproject.toml ├── README.md ├── .uv.toml ``` 3. **Configure Packaging** - Create `pyproject.toml` with minimal dependencies - Create virtual environment: `uv venv` - Activate the environment: `source .venv/bin/activate` - Install in development mode: `uv pip install -e ".[dev]"` ### Milestone 2: Core Module Skeletons ✅ **COMPLETED** 1. **Implement Basic Module Structure** ✅ **COMPLETED** - Create `__init__.py` with version info - Add full implementations for: - `downloader.py` - comprehensive HTTP handling, retry logic - `cache.py` - metadata-based intelligent caching - `timeutils.py` - AEST timezone, dispatch intervals - `processor.py` - comprehensive data standardization functions - `batch_commands.py` - parallel download operations - `mmsdm_helper.py` - MMSDM-specific utilities - `data_source.py` - configuration for multiple data types 2. **Set Up Testing Framework** ✅ **COMPLETED** - Configured pytest with coverage - Comprehensive test files for all modules - GitHub Actions CI/CD workflows with automated testing ## Phase 2: Core Functionality Implementation (Milestones 3-4) ### Milestone 3: Time Utilities and Cache Management 1. **Implement Time Utilities** - Date parsing and formatting - Interval generation - Time period handling for AEMO data types - Forecast horizon calculations - Write comprehensive tests 2. **Implement Cache Management** - Cache directory structure - Metadata tracking - Cache lookup and retrieval - Cache invalidation - Write tests for caching logic ### Milestone 4: Data Downloading 1. **Map AEMO Data Sources** - Identify public endpoints for each data type - Create URL templates - Implement data source mapping 2. **Implement Downloader** - HTTP request handling with retries - Error handling - Authentication (if needed) - Input validation - Integration with cache - Batch downloading for multiple regions 3. **Test Downloading** - Create mock responses for testing - Implement end-to-end tests - Verify cache integration ## Phase 3: Data Processing (Milestones 5-6) ### Milestone 5: Basic Data Processing 1. **Implement Data Standardization** - Column normalization - Data type conversion - Date parsing - Missing value handling 2. **Data Type Handlers** - DISPATCHPRICE handler - DISPATCHREGIONSUM handler - Write tests for each handler ### Milestone 6: Advanced Processing 1. **Implement Time Series Processing** - Resampling and aggregation - Rolling statistics - Time-based filtering - Region-based processing - Tests for time series functions 2. **Implement Predispatch Handlers** - PREDISPATCH processing - P5MIN processing - Tests for forecast data handling 23. **Statistical Functions** - Price statistics - Demand statistics - Data aggregation utilities - Visualization helpers ## Phase 4: Documentation and Examples (Milestone 7) 1. **API Documentation** - Set up Sphinx (or other documentation tool) - Document all public functions - Create API reference 2. **Usage Examples** - Basic usage examples - Advanced usage examples - Jupyter notebooks with real-world data 3. **Installation and Setup Guide** - UV-specific installation instructions - Development setup instructions - Dependency management guide ## Phase 5: Quality Assurance and Release (Milestone 8) 1. **Code Quality** - Run and fix linting issues (black, isort) - Run and fix type checking issues (mypy) - Ensure 90%+ test coverage 2. **Comprehensive Test Suite** - Add edge cases to tests - Implement integration tests - Test on multiple Python versions 3. **Performance Optimization** - Profile code for bottlenecks - Optimize data loading and processing - Implement caching improvements 4. **Prepare for Release** - Update version number - Finalize README - Create CHANGELOG - Update package metadata 5. **CI/CD Pipeline Setup** - Set up GitHub Actions workflows - Include linting, testing, and deployment steps - Automate versioning and release tagging 6. **Release** - Build package with UV - Test installation in clean environment - Publish to PyPI ## Phase 6: Continuous Improvement (Ongoing) 1. **Monitor and Fix Issues** - Address bug reports - Implement feature requests 2. **Expand Supported Data Types** - Add support for additional AEMO data types - Enhance processing capabilities 3. **Community Building** - Respond to user questions - Review and merge contributions - Update documentation based on user feedback ## Development Practices Throughout the implementation, adhere to these practices: 1. **Dependency Management with UV** - Add new dependencies to pyproject.toml - Install with `uv pip install -e ".[dev,docs]"` - Periodically update with `uv pip install --upgrade -e ".[dev,docs]"` - Create requirements.lock file: `uv pip freeze > requirements.lock` 2. **Version Control** - Commit frequently with descriptive messages - Use feature branches for development - Create pull requests for code review 3. **Testing** - Write tests before implementation (TDD) - Maintain high test coverage - Include edge cases in tests 4. **Documentation** - Document code as you write it - Keep README and user guides up-to-date - Include examples for new features 5. **Code Quality** - Run black and isort before commits - Use mypy for type checking - Follow PEP 8 guidelines