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Abstract

Business process predictive analytics exploit historical process execution logs,
known as event logs, to generate predictions of running cases of a business process,
such as next event or remaining time. In the state-of-the-art approaches, deep
learning algorithms have attracted increasing attention and as a result deep learning-
based prediction models become the mainstream of the research. Often encoding
methods for event logs and neural network architectures have been considered as two
factors that would impact models’ prediction performance. In fact, an event log, as
the input data for prediction, also plays an important role in the predictive pipeline
and should not be overlooked. However, there is no recent research concerning
with the potential influence of event logs on prediction performance. This thesis
aims to investigate how different event logs affect the performance of deep learning-
based process prediction models. We propose and implement a benchmark on two
different encoding methods and three Long Short-Term Memory (LSTM) models
with seven real-life event logs for predicting next activity, next resource and next
interval time. Based on the above benchmark, this thesis explores and analyses some
key characteristics of event logs and extracts findings on relationships between the
characteristics of event logs and performance of process prediction models.

Keywords: Predictive Process Analytics; Deep Learning; Event Log.
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1 Introduction

As a new discipline of process mining, predictive process analytics focus on analysing
historical data to predict future observations of a business process. These predictions
mainly involve the next-event forecasting [7], outcome of an on-going case [25], and the
remaining time for a case till its potential completion [30].

In the last decade, a variety of techniques have been used to conduct these predictions.
For instance, some methods in the literature use process-specific techniques [16, 26]. while
other works use data science techniques and machine learning algorithms [13, 17, 29]. More
recently, deep learning techniques have been brought into attention in predictive process
analytics due to their high performance in making accurate predictions in text mining
and image processing [12]. Similarly to natural language processing that uses sequential
algorithms, process analytics takes sequential data as input. Hence, deep learning-based
approaches are also applicable to process analytics. As Rama-Maneiro et al. [20] stated
in their research, “deep learning has been widely applied to the predictive monitoring of
business processes”.

Predicting the next event is a typical process prediction problem and an important and
challenging topic in predictive process analytics [23]. By applying next event prediction
iteratively and progressively, it is possible to obtain a sequence of future events — pre-
diction of remaining sequence. This will ultimately lead to process completion resulting
in process outcome prediction. The accuracy of the latter two predictions is depending
on the quality of next activity prediction. In addition, time prediction is also a classic
regression problem in business predictive analytics. Thus, this thesis intends to determine
the extent to next event and time prediction. Also, considering the capability and per-
formance of deep learning, it will serve as the main techniques to underpin the process
prediction models in my research.

The overall structure of the study takes the form of six sections, including this introductory
section. Section 2 begins by laying out the theoretical dimensions of the research, and
looks at the state-of-the-art of business predictive analytics. Section 3 is concerned with
the methodology and the experiment design for this thesis. Section 4 presents and analyses
the findings from benchmark. Section 5 will discuss the limitation and challenges facing
in the research. Finally, Section 6 gives a brief summary and critique of the findings, and
includes a discussion of the implication of the findings to future research into this area.
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2 Literature Review

This literature review will cover core techniques and knowledge for business process pre-
diction underpinned by deep learning techniques.

2.1 Predictive Process Analytics

Predictive process analytics is an application of predictive analytics in the field of Business
Process Management, which predicts the future states of a running business process.
The workflow for conducting predictive process analytics is discussed in some papers.
Maggi et al. [14] presents a novel framework called Predictive Business Process Monitoring
Framework. It uses Trace Processor module to construct prediction models based on
historical event logs and takes the output of previous module as Predictor module to
process the prediction of current execution trace. This workflow provides a basic idea of
how to perform predictive process monitoring, but defines ad-hoc checkpoints specific to
certain algorithms and predictions, which makes it hard to apply the approach to other
projects.

Figure 1: Deep learning based predictive process analytics workflow [18].

To solve this problem, a general approach for predicting business process are proposed
by Márquez-Chamorro et al. [15], which divides the workflow into two stages. The first
stage runs offline and contains three main checkpoints, such as encoding event logs, build-
ing predictive models and evaluating the models. The second stage is online, in which real
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time process events are fed to the predictive models and final prediction are generated as
the output. This workflow indicates that the most significant step for predictive process
analytics is the construction of predictive models because the accuracy of the final results
seem to depend on the quality of the predictive model. A more specific workflow based on
deep learning approaches as shown in Fig. 1 is introduced by Neu et al. [18], which builds
the offline training model by deep learning. It indicated that there are three major com-
ponents in deep learning-based business process prediction, which are input logs, encode
methods and deep learning architectures.

2.2 Event Logs

Event log, as the standard data format for process mining [27], is the main input data
for predictive process analytics. It describes the interchanges of on-going process events
between information systems or applications. A fragment of real-world event logs from
Volvo IT incident management system1 is shown in Table 1.

Case ID Activity Resource Timestamps org:group
1-364285768 Accepted + In Progress Frederic 01.04.2010 0:59:42 V30
1-364285768 Accepted + In Progress Frederic 01.04.2010 1:00:56 V30
1-364285768 Queued + Awaiting Assignment Frederic 01.04.2010 1:45:48 V5 3rd
1-364285768 Accepted + In Progress Anne Claire 07.04.2010 0:44:07 V5 3rd
... ... ... ... ...
1-364285768 Accepted + Assigned Sarah 12.04.2012 1:11:25 V5 3rd
1-364285768 Accepted + In Progress Loic 03.05.2012 19:10:10 V5 3rd
1-364285768 Completed + Resolved Loic 03.05.2012 19:10:12 V5 3rd
1-364285768 Completed + Closed Siebel 11.05.2012 9:26:15 V5 3rd
... ... ... ... ...

Table 1: Event log example

Each row of an event log represents an execution of process event. For a standard event
log, it requires at least three elements in each row, which contain a unique identifier for
the case of current event (e.g., Case ID), a name or an identifier for the activity of current
event (e.g., Activity) and an execution time of current event (e.g., Timestamps). Some
extra attributes are also included in the event logs such as resource name or identifier
(e.g., Resource) and resource group information (e.g., org:group), which are associated
with the execution of the corresponding event. According to the definition of event log
format XES [10], “an event that occurs ... before another event that is related to the
same trace shall be assumed to have occurred before that other event.” It suggests that
the events in the same trace or case should be sequentially ordered by timestamps. Thus,
predictive process analytics deals with sequential data.

1https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
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2.3 Encoding

The purpose of encoding is to transform the event data to tensors in which deep neural
networks can directly learn and process. Two main encoding methods for predicting next
activity and resource, such as one-hot and embedding are presented in the following.

One-hot encoding [9] It focuses on transforming the categorical values, such as the
names of activity, to the numerical values, while it has better performance than common
method like label encoding. The process of label encoding is to replace a variable with
categorical value with an integer (usually start from 0), but the integer value of the
variable may affect the predictive results since the categorisation in a direct way assumes
that the variables with large values are more important than others. Comparing with
common word encoding, one-hot method makes use of one 1×N matrix (binary vector)
to represent the numerical value. The size N of binary vector is depending on the number
of possible distinct values for the variable and the position of a one in the vector will
determine which category the variable belongs to. In practical usage [24], it is applied on
the prediction of next activity or resource by mapping the state of each unique activity or
resource to a list of ordered binary. Assuming that the total amount of unique activities
is k, a vector of k digits, which is ordered by random or specific methods, in binary (one
or zero) can be used to represent the event logs.

Embedding It originates from natural language processing [4] in which a word from
a vocabulary set is taken as input by a specific neural network, called Embedding Layer.
Each word is embedded as vectors into the following neural layers, which are the normal
hidden layers for learning the potential insights. When inputting a whole sentence to
the models, the deep neural networks would translate the sentence from an ordered word
list to a sequence of vectors. Following this idea, the embedding can also be adopted to
transform process traces to vector arrays as the input for next activity prediction neural
networks [7]. The traces or cases can be considered as a sentence and the activity or
event as the word. Moreover, the vocabulary set of language in next activity prediction is
represented by the set of activities in the process models.

2.4 Deep learning architectures

For predictive process analytics, two popular deep learning-based approaches will be dis-
cussed in the following.
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Long Short Term Memory (LSTM) As a special type of Recurrent Neural Net-
work (RNN), it is designed with multiple switch gates to avoid the problems faced
by RNN [8]. The cells of LSTM increase four switch gates and two horizon paths to
pass the previous state to the current state and control hidden layer to update only rel-
evant information to the memory. Evermann et al. [7] firstly introduce a novel LSTM
next-element prediction model by adapting the sentence prediction methods in natural
language processing. They compare activities in cases with words in sentences and find
that this structure also works for predicting process monitoring. Following this structure,
all previous activities are encoded by word embedding as the prefix of ongoing cases to
predict the suffix (next activities or the remaining events). Tax et al. [24] also try the
method of LSTM in a different way. They do not have the embedded dimension of LSTM
cells and the number of neural networks for each layer is also reduced from 500 to 100-150.
Although the outcomes of two paper do not have too much difference, the latter method
has a better performance because of avoiding overfit of prediction. Based on these two
papers, Camargo et al. [6] combine them and propose a new approach for pre-processing
and post-processing the input and output in the LSTM prediction models, which give
higher accuracy results.

Transformer is initially introduced in natural language translation area [28]. The con-
cept of transformer is based on the sequence-to-sequence model, which has encoder, en-
coder vector (intermediate vector) and decoder as the main part. For the encoder and
decoder, they are actually multiple layers of LSTM. The attention layer in transformer
is called Scaled Dot-Product Attention and its output is a weighted sum of the values
to avoid the effects of long-range dependencies. But a single self-attention mechanism
cannot handles a whole sequence in multiple ways due to too many features in dataset.
The researchers prefer to stack self-attention mechanisms together to let them work in
parallel, just like making use of multiple LSTM cells in RNN methods. The multi-head
self-attention mechanisms in transformer help this method discover all of these dependen-
cies in one sequential dataset.

Philipp et al. [19] and Agarwal et al. [1] contrast the transformer method with LSTM
method for making process prediction. They both indicate that transformer performs
better than RNN methods especially when dealing with large and complex datasets. While
the above studies confirm the possibility of implementing transformer to predict next
events, they do not provide a detailed framework or architectures for guiding further
practice. Most recently, a novel transformer framework for predictive process analytics
is introduced by Bukhsh et al. [5]. This paper also suggests that transformer performs
very well in predicting the next activity, but it does not utilise additional event attributes
and only use event prefixes as the input, which means that it is unfair to compare the
results directly with other methods. A potential way for validating the real performance
of transformer is to conduct a benchmark in the same situation.
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2.5 Research Gap

This Honours research project aims to investigate the impact of different event
logs on the performance of deep learning-based process prediction models.
This is motivated by the fact that the same deep learning technique may perform quite
differently, in terms of the resulting process prediction model accuracy, on various event
logs, as revealed by the existing studies. From the literature review, encoding methods
and settings of neural networks have been considered as two factors that would impact the
prediction performance. The deep learning-based process prediction workflow shown in
Fig. 1 indicated that event logs could be another influencing factor besides the above two
factors. In addition, when Neu et al. [18] evaluated the prediction accuracy for each event
log, they concluded that the specific characteristics in the event logs might influence the
performance of the model. Therefore, identifying potential key characteristics of event logs
that may impact on prediction performance is essential for improving process prediction
models. However, this is yet underexplored and presents an open research challenge.
Hence, I propose the following two research questions to address the above research gap:

RQ1: Which characteristics of an event log may impact on process prediction model
performance?

RQ2: How the event log characteristics (identified in RQ1) affect deep learning-based
process prediction model performance?

14



3 Methods

The study is conducted in the form of a benchmark and concerned with figuring out
how the event logs will impact the performance of deep learning-based business process
prediction models. The benchmark design follows the workflow in Fig. 1 and the overall
pipeline of experiments are shown below.

Figure 2: Experiment pipeline for benchmark.

The first step of the overall benchmark is to profile the event logs and select suitable
input features, corresponding to Section 3.1. Section 3.2 will introduce the definition of
predictive tasks for experiments. Then, the input features will be encoded from event log
to tensors (Section 3.3), which are ready for feeding into neural networks. Section 3.4
will explain how to construct different neural networks, which is also the third stage
of pipeline. After finishing the preparation of experiments, as the first three stages in
pipeline, the proposed deep learning models will be put into evaluation and get the results
of benchmark, which will be discussed later in Section 4.

3.1 Input features

An event log is used to extract features for a process predictive model underpinned by deep
learning. Based on the notion of a trace (which comprises a sequence of events of a case,
see Section 2.2), a prefix trace of length l contains the first l events of a trace. As such,
multiple prefix traces of different lengths of a case capture the case execution progressively,
and are an important input to train a deep learning model for process prediction. Their
key concepts are defined as follows:

Definition 1 (Event and attribute [22]) Let C be the set of case identifiers, A the set
of activity names, R the set of resource identifiers, and T the set of timestamps. E is the
set of events, and each event has the above attributes2. For any e ∈ E : ce ∈ C is the case
identifier of e, ae ∈ A is the activity name of e, re ∈ R is the resource identifier of e, and
te ∈ T is the timestamp of e. If an attribute is missing, a ⊥ value is returned, e.g., re = ⊥
means that no resource is associated with event e. �

2An event can have more attributes but these are not considered in this research.
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Definition 2 (Event Log [22]) An event log L ⊆ E is a set of events. �

Definition 3 (Trace [27]) A trace σ ∈ L∗ is a finite sequence of unique events in L.
Let n = |σ| and σ = [e1, ..., en] (where positive integers 1, ..., n can be referred to as event
index numbers). For all i, j ∈ {1, ..., n} : cei = cej (i.e., all events in a trace refer to the
same case). For 1 ≤ i < j ≤ n: ei 6= ej (i.e., each event appears only once), and tei ≤ tej
(i.e., the ordering of events in a trace should respect their timestamps)3. �

Definition 4 (Prefix trace [25]) Given a trace σ = [e1, ..., en] and an integer 1 ≤ l ≤ n,
prefix (σ, l) = [e1, ..., el] is a prefix trace of σ of length l (i.e., it contains the first l events
of σ). �

Based on the above definitions, an event ei in a prefix trace can be represented as a tuple
(aei , rei , tei), or (ai, ri, ti) as a simplified notation. The time feature is specified to capture
the time elapsed from the start event e1 to the current event ei of a trace. We assume that
each event has a timestamp associated with the completion of the event, and hence the
time feature for event ei is computed as ∆ti = ti− t1. Given a prefix trace [e1, ..., el], three
feature vectors can be extracted as input to a deep learning model, which are activity
vector (a1, ..., al), resource vector (r1, ..., rl), and a time interval vector (∆t1, ...,∆tl).

3.2 Prediction tasks

Business process prediction aims at forecasting the state of next event or remaining se-
quences until the end of case by a certain event prefix. Three major predictive tasks, in-
cluding next activity prediction, next resource prediction and next elapsed time prediction
will be conducted in the benchmark. Given a event prefix such as prefix (σ, l) = [e1, ..., el],
el+1 is the next predicted event by a function Ω . For each Ω , it represents a neural network
architecture in this thesis.

Definition 5 (Next activity prediction) The next activity prediction problem can be
defined as Ωa = ael+1

. �

Definition 6 (Next resource prediction) The next resource prediction problem can
be defined as Ωr = rel+1

. �

Definition 7 (Interval time prediction) The interval time prediction problem can be
defined as Ωt = tel+1

− te1 = ∆tl+1. �
3Event index numbers take precedence over timestamps where two events occur concurrently.
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3.3 Data encoding

Definition 8 (One-hot encode) The set of one-hot vector V can be defined as:{
v ∈ {0, 1}n :

n∑
i=1

vi = 1

}

where n is the total number of unique variable for a feature. �

Definition 9 (Embedding encode) A matrix W ∈ Rn×f can be used to describe the
embedding shape in each predictive model. The size of the embedding matrix should be
the product of the number of unique variable n in a feature and the amount of input
channel size f for hidden neural networks in prediction models. �

3.4 LSTM architectures

Due to practical constraints, this thesis cannot provide a comprehensive experiment on
all deep learning approaches for business process prediction. This benchmark will adopt
three LSTM architectures from Camargo et al. [6] for evaluation in Fig. 3, which consist
on a specialized architecture, shared categorical architecture and full shared architecture.

(𝑎𝑎1, … , 𝑎𝑎𝑙𝑙) (𝑟𝑟1, … , 𝑟𝑟𝑙𝑙) (𝛥𝛥𝛥𝛥1, … ,𝛥𝛥𝛥𝛥𝑙𝑙)

Encoding
(𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒/𝑉𝑉𝑜𝑜𝑜)

Encoding
(𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒/𝑉𝑉𝑜𝑜𝑜)

LSTM𝛼𝛼

LSTM𝛽𝛽

( a )

LSTM𝛼𝛼 LSTM𝛼𝛼

Dense

𝒂𝒂𝒍𝒍+𝟏𝟏

LSTM𝛽𝛽LSTM𝛽𝛽

Dense

𝒓𝒓𝒍𝒍+𝟏𝟏

Dense

𝒕𝒕𝒍𝒍+𝟏𝟏

(𝑎𝑎1, … , 𝑎𝑎𝑙𝑙) (𝑟𝑟1, … , 𝑟𝑟𝑙𝑙) (𝛥𝛥𝛥𝛥1, … ,𝛥𝛥𝛥𝛥𝑙𝑙)

Encoding
(𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒/𝑉𝑉𝑜𝑜𝑜)

+

Encoding
(𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒/𝑉𝑉𝑜𝑜𝑜)

( b )

LSTM𝛼𝛼

Dense

𝒂𝒂𝒍𝒍+𝟏𝟏

LSTM𝛽𝛽

Dense

𝒓𝒓𝒍𝒍+𝟏𝟏

LSTM𝛽𝛽 LSTM𝛽𝛽

LSTM𝛼𝛼

Dense

𝒕𝒕𝒍𝒍+𝟏𝟏

(𝑎𝑎1, … , 𝑎𝑎𝑙𝑙) (𝑟𝑟1, … , 𝑟𝑟𝑙𝑙) (𝛥𝛥𝛥𝛥1, … ,𝛥𝛥𝛥𝛥𝑙𝑙)

Encoding
(𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒/𝑉𝑉𝑜𝑜𝑜)

+

Encoding
(𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒/𝑉𝑉𝑜𝑜𝑜)

( c )

LSTM𝛼𝛼

Dense

𝒂𝒂𝒍𝒍+𝟏𝟏

LSTM𝛽𝛽

Dense

𝒓𝒓𝒍𝒍+𝟏𝟏

LSTM𝛽𝛽 LSTM𝛽𝛽

Dense

𝒕𝒕𝒍𝒍+𝟏𝟏

Figure 3: Model architectures of (a) specialized model, (b) shared categorical model and
(c) full shared model (adopted from Camargo et al. [6])

All three models share similar settings in the neural networks. They receive the trace prefix
σ = [e1, ...el] with three fundamental feature vectors as the input of neural networks. For
categorical features, activity vector (a1, ..., al) and resource vector (r1, ..., rl) are required
to go through the additional encoding layer for converting the event data to tensors in
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neural networks. While the numerical feature can be feed to networks. Predictive function
Ω is represented by the combination of LSTMα, LSTMβ and Dense layers, in which
LSTMα are used for learning features and the predictive tasks are done by LSTMβ.
Three predictive task, including next activity al+1, next resource rl+1 and next interval
time tl+1, are corresponding to three outputs of the models.

Three LSTM architectures differ in whether sharing information across features:

• In specialized architecture (Fig. 3(a)), three features can be recognised as three in-
dependent models and they do not share information with others.

• In shared categorical architecture (Fig. 3(b)), the categorical features are concate-
nated into one vector and feed into the same LSTMα. The time feature is still
independent from the other two features.

• In full shared architecture (Fig. 3(c)), the model will concatenate activity feature,
resource feature and time feature into one vector and they will share one LSTMα

layer.
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4 Evaluation

4.1 Datasets

For the benchmark, experiments are performed using seven real-life event logs of BPI
Challenges concerned with a variety of business processes from different domains:

• BPIC20114 event log records the treatment process of Gynaecology department in
a hospital.

• BPIC20125 event log describes a personal loan application process from a Dutch
financial institute.

• BPIC20136 dataset is extracted from Volvo’s IT incident and problem management
system. In this benchmark, only the incident related log will be chosen for experi-
ments.

• BPIC20157 dataset contains five event logs on building permit applications from five
Dutch municipalities. Since all five event logs share the same application processes
but in different municipalities, the experiment will take one of them (BPIC2015-1)
into consideration.

• BPIC20178 event log is provided by the same loan application process and institute.
Comparing with BPIC2012, the new log includes richer cases and information.

• BPIC20189 event log records the processes of applications for EU direct payments
for German farmers.

• BPIC202010 dataset contains a set of event logs from the reimbursement process at
TU/e. The benchmark will only use permit log in experiment.

Table 2 provides an overview of the seven event logs containing statistics of the control-
flow perspective, such as the number of cases, the number of unique activity and resource,
the average and maximum value of trace length and trace duration and the total number
of variants.

4https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
5https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
6https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
7https://doi.org/10.4121/uuid:a0addfda-2044-4541-a450-fdcc9fe16d17
8https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
9https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972

10https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
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Event Log
Num.
cases

Num.
activities

Num.
Resource

Num.
event

Avg.
case length

Max.
case length

Avg.
case duration

Max.
case duration

Variants

BPIC2011 1143 624 43 150291 131.49 1814 386.65 days 1156 days 981
BPIC2012 13087 36 69 262200 20.04 175 8.62 days 137.22 days 4366
BPIC2013i 7554 13 1440 65533 8.68 123 12.08 days 771.35 days 2278
BPIC2015-1 1199 398 23 52217 43.55 101 95.72 days 1486 days 1170
BPIC2017 31509 26 149 1160405 36.82 177 21.9 days 281.04 days 15484
BPIC2018 43809 170 165 2514266 57.39 2973 335.39 days 1011.4 days 28923
BPIC2020permit 7065 51 2 86581 12.25 90 87.4 days 1190 days 1478

Table 2: Data profiles for event logs used in experiments.

4.2 Experiment settings

Data split During the preprocessing stage, all event logs have been sorted in chrono-
logical order. Each event log will be split into train-test set with a case distribution of
70%:30%. Additionally, 15% of the data from the training set is used as validation split
to avoid the overfitting or underfitting in the learning phrase.

Evaluation metrics Determined by different prediction targets, the experiments apply
the following metrics for evaluation:

• Accuracy: Since the next activity and next resource prediction are both classification
problems, the benchmark will utilize accuracy metric. It represents the proportion
of all correct classifications in all prediction.

• Mean Absolute Error (MAE): While the time prediction task is belong to regression
problem, the metric for evaluating next lapse of time is Mean Absolute Error (MAE),
which is defined as the arithmetic mean of the prediction errors. Formally,

MAE =

∑n
i=1 |yi − ŷi|

n

where yi is the true value of the test case, ŷi is the predictive value and n is the total
number of test cases.

Feature Selection and Prefix Generation An event log comprises of dynamic and
static features. Whilst Dynamic features change over the execution of the process, Static
features are often case specific and remains constant. Since all seven logs are made up
with several dissimilar features, it is not reasonable to select some unique features into
experiments. Based on the experiment design in Section 3.1, only some fundamental
dynamic features (shown in Table. 3) will be used for the experiments. In order to predict
the activity, resource and elapsed time of next event, it is required to convert them into
process prefixes. The method of generating prefix for event log is:
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Feature Category Column Name
Single Process Trace Identification Case ID
Dynamic Features

Activity Concept Name
Resource Resource
Timestamp Elapsed Time

Static Features None

Table 3: Event log features used in the experiments.

• mapping event log by unique Case ID into groups firstly;

• ordering all the dynamic features by ’Timestamp’ field in ascending order to generate
a process trace for a given Case ID;

• introducing a new time related feature at this stage ’Time Elapsed’, which represents
the time difference between the very first timestamp of a trace, to the timestamp of
a given activity in the same trace;

• generating prefixes at each event, by considering the partial trace from the start of
the trace to the given event, eventually.

Implementation Details The experiments were performed on a server with Windows
10 Operation System and its hardware contained 3.8 GHz AMD Ryzen 3900X CPU having
64 GB RAM and one single NVIDIA RTX A4000 GPU with 16 GB Memory. Here are
some key ideas for implementation:

• Prefix generation was performed with using Structured Query Language (SQL) by
PostgreSQL for speeding up the computation.

• The deep neural networks are implemented by TensorFlow 2.5 Library in Python.
The constructed models are trained by an ADAM optimiser with a learning rate of
0.001 for all event logs in the experiments. By default, the maximum number of
epoch is set to 200 with batch size of 128.

• Some techniques, like early stopping and adaptive learning rate, are also applied to
circumvent the overfitting and underfitting of deep learning models. Generally, the
hyper-parameters are keeping consistency for each log and model when training.
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4.3 Results and Observations

4.3.1 Next activity & resource prediction

Table 4 and Table 5 present the model performance difference of specialised model, shared
categorical model and full shared model for predicting next activity and next resource of
seven datasets by accuracy.

Specialized Shared categorical Full Shared
Dataset One-hot Embedding One-hot Embedding One-hot Embedding
BPIC2011 9.91% 9.91% 9.79% 10.00% 9.91% 9.91%
BPIC2012 78.13% 76.30% 77.38% 77.93% 69.63% 65.97%
BPIC2013i 61.56% 65.01% 60.63% 63.30% 56.15% 59.18%
BPIC2015-1 48.35% 43.77% 45.77% 43.35% 24.20% 33.90%
BPIC2017 63.93% 55.23% 56.02% 53.48% 50.52% 52.81%
BPIC2018 5.38% 5.46% 5.37% 5.45% 5.37% 5.37%
BPIC2020permit 52.48% 52.48% 52.56% 53.52% 30.32% 34.73%

Table 4: The performance comparisons of specialised model, shared categorical model and
full shared model in predicting next activity. The measurement metric is accuracy in %.

Specialized Shared categorical Full Shared
Dataset One-hot Embedding One-hot Embedding One-hot Embedding
BPIC2011 56.18% 56.31% 56.02% 56.27% 56.23% 56.31%
BPIC2012 45.65% 42.07% 63.30% 67.93% 61.97% 65.26%
BPIC2013i 6.50% 6.50% 6.50% 6.50% 6.96% 6.56%
BPIC2015-1 88.96% 88.34% 85.92% 88.29% 41.31% 44.19%
BPIC2017 13.41% 12.83% 43.69% 48.93% 12.91% 12.12%
BPIC2018 15.04% 15.04% 15.04% 15.04% 15.04% 15.04%
BPIC2020permit 74.64% 74.55% 84.92% 87.38% 77.01% 77.01%

Table 5: The performance comparisons of specialised model, shared categorical model and
full shared model in predicting next resource. The measurement metric is accuracy in %.

BPIC2011 The results of predicting next activity and resource for all three models are
in an approximately same level. The encoding method is not the key reason for influencing
the performance of predictive models. However, the accuracy of next activity prediction
is only 9.91% and it is extremely low than expected. By contrast, next resource prediction
task reaches to around 0.56 in accuracy, which is fair for a complex log.

BPIC2012 From the prediction results of BPIC2012, it is suggested this log is not
sensitive to the encoding method and the LSTM models will affect the accuracy instead.
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When predicting next activity, specialised model and shared categorical model achieve a
very high value in accuracy (about 0.77). Nevertheless, the accuracy in full shared model
drops to 65%-68% since the negative impact of the time features. On the other hand, the
resource prediction does not work very well in specialised model, and the concatenations
of activity and resource will assist the improvement of performance.

BPIC2013 Incident The next activity task can get more than 60% of accuracy when
only consider activity feature and resource feature as input of models. When introducing
the time features, the next activity accuracy will drop to less than 60%. Contrastingly,
all three models cannot provide an acceptable result in accuracy of next resource.

BPIC2015-1 The high accuracy in predicting next resource, up to 0.88, shows that
event log BPIC2015-1 is receptive to resource features. Also, sharing time feature in full
shared model has negative influence on the accuracy of both next activity and resource.

BPIC2017 Although BPIC2017 shares the same business process with BPIC2012, the
prediction results are thoroughly different. Especially for the next resource prediction, the
accuracy is only in value of 12% approximately.

BPIC2018 Similar with the results of BPIC2011, BPIC2018 achieves a stable but low
accurate in predicting both next activity (5.37%) and next resource (15.04%). A potential
reason for this result is that it consists some significant static attributes and they are not
involved in this experiment.

BPIC2020 Permit The permit log within BPIC2020 is comparable to BPIC2015-1,
which is also outstanding in resource prediction and can get a reasonable result in next
activity task. In practical, shared categorical model is the best model for predicting next
activity, and full shared model will lead to low accuracy in next activity from 0.5 to 0.3.

4.3.2 Interval time prediction

Since the activity feature and resource feature in both specialised model and shared cat-
egorical model are not involved in prediction time-related feature, they can actually be
treated as the same predictive model, which only considers time feature as the model input
for prediction. In this case, the impact of encoding methods can also be ignored in these
two models. For full shared model, the experiments on one-hot and embedding would be
operated as normal.
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Table 6 shows the model performance difference of specialised model, shared categorical
model and full shared model for predicting next interval time of seven datasets by Mean
Absolute Error (MAE) in days. It is indicated that full shared model, which introduces
categorical features for time predictive task, does not surpass the other two models. In
fact, the value gaps of MAE in all seven logs among three models is pretty small. Some
logs, like BPIC2015-1 and BPIC2017, get the slight improvement in the prediction after
applying full shared model. On the other hand, the results of other logs are not benefitted
from the change of model structure.

Specialized & Shared Categorical Full Shared
Dataset One-hot & Embedding One-hot Embedding
BPIC2011 268.0638 268.0354 268.1196
BPIC2012 3.527917 4.46625 5.236667
BPIC2013i 46.20542 50.6425 40.4875
BPIC2015-1 34.0875 33.02292 28.58875
BPIC2017 4.991667 5.720833 5.377083
BPIC2018 156.6446 147.9421 147.5338
BPIC2020permit 25.31833 27.07375 23.77583

Table 6: The performance comparisons of specialised model, shared categorical model and
full shared model in predicting next interval time. The measurement metric is Mean
Absolute Error (MAE) in days.

4.4 Analysis and Findings

4.4.1 The impact of encoding method

Fig. 4 shows the different experiments in seven different logs, and the accuracy of models
with one-hot encoding do not fluctuate significantly with reference to the accuracy of
models encoded by embedding. Comparing with embedding method, one-hot requires a
larger vector when the number of unique activity is increasing. It takes more space in
memory than word embedding, which would influence the performance of running the
models. However, process models are not same as languages because of the different sizes
of unique activity and vocabulary. For example, BPIC2013i has only 28 unique activities,
which require less encoded vectors than natural languages. From Table 2, even the event
log BPIC2011 with the largest number of unique activity is only 624. In this case, one-hot
encoding is still usable for predictive process analytics.
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Figure 4: Accuracy differences for One-hot and Embedding in all seven experiment logs.

4.4.2 Activity-weakness and resource-weakness

The benchmark results on all seven logs show that not all event logs are omnipotent in
both next activity and resource tasks. Some of them may achieve good performances in
computing next activity prediction, while the other logs may not. Based on this charac-
teristic, the event logs can be clustered into activity-weakness logs and resource-weakness
logs. The definition of each class will be given below.

• Activity-weakness log: Given an event log, if its accuracy of predicting next ac-
tivity in any of all three deep learning models is less than 33.3%, it can be assumed as
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an activity-weakness log. From the benchmark, BPIC2011, BPIC2015-1, BPIC2018
and BPIC2020 permit can be recognised in this category.

• Resource-weakness log: Given an event log, if its accuracy of predicting next
resource in any of all three deep learning models is less than 33.3%, it can be assumed
as a resource-weakness log. The benchmark results suggest that three event logs,
BPIC2013i, BPIC2017 and BPIC2018, meet this criterion.

Comparing two classes of logs with the statistics of event logs in Table 2, some potential
characteristics for these event logs can be surmised as the reasons for low performance in
activity prediction. Firstly, the large number of unique activities in an event log would
reduce the accuracy in activity prediction. In Fig. 5, it shows the distribution of the
number of unique activities for seven logs, in which BPIC2011, BPIC2015-1, BPIC2018
and BPIC2020 permit has more unique activities than other logs.

Figure 5: The number of unique activities for seven event logs.

Figure 6: Activity loop ratio for seven event logs.

The degree of iterations and loops in an event log would affect the predictive performance
of next activity positively. This measurement of activity loops can be calculated by the
total number of events, the number of unique activities and the average length of cases.
Assuming that each unique activity repeats the same number of times in one event logs,
the ratio of the repeating times of each activity with the average case length can be
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recognised as the degree of activity iterations. As the Fig. 6 shown, the activity weakness
logs, including BPIC2011, BPIC2015-1, BPIC2018 and BPIC2020 permit, have low values
in loop ratio than other logs with high performance in activity prediction.

On the other hand, the impact factor of resource prediction is similar with the first reason
in next activity prediction. The performance of resource prediction (Fig. 7) would reduce
when increasing the number of unique resources. Especially, BPIC2013i has 1440 unique
resources and the accuracy is only 6.5%.

Figure 7: The number of unique resources for seven event logs.

4.4.3 The impact of time feature

From the results of predicting next activity, next resource and next interval time, the time
feature plays a limited role in improving the performance. Fig. 8 compares the relationship
of the average duration of cases and the result of next interval time prediction, in which
the MAE is aligned with the average case duration. It means that the length of the case
duration would affect the accuracy of predicting time-related feature.

Figure 8: The distribution of average duration of cases and the MAE of next interval time
prediction by seven logs.
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The time feature will also influence the next activity and resource prediction. It even
disturbs the feature learning and leads to the performance reduction in some logs, like
BPIC2012 and BPIC2015-1. However, from the analysis of the relationship between
the statistics of event logs and the prediction results, no related characteristics can be
summarised. Due to practical constraints, this thesis cannot provide a comprehensive
explanation of the negative impacts.
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5 Discussion

5.1 Clustering prefix traces into buckets

The low accurate predictions in next activity and resource for BPIC2018 indicate that it
is not a reasonable choice to put the entire log into models directly, especially for a huge
dataset with poor data quality [21]. Normally, from the process analytics perspective, a
functional way is to cluster one log by some indicators, which is also known as bucketing.
Some researches in machine learning-based predictive process analytics [25, 30] has utilised
process bucketing, in which prefix traces can be divided into several buckets and each
bucket will be assigned a unique predictor for improving the prediction performance.

Although extensive research in has been carried out on deep learning-based business pre-
dictive analytics, no single study exists which considers bucketing as a part of predictive
model. A potential reason is that the deep neural networks can learn features by them-
selves and researchers would like to build more generative models. However, the complex-
ity of event log reduces the performance of neural networks. In particular, some real-life
logs, like BPIC2012 [3], record traces from a business process with several sub-processes.
It is becoming increasingly difficult to ignore the usage of bucketing with deep learning
approaches. Based on the pipeline in Section 3, adding a extra phrase for bucketing the
event log before encoding is an appropriate solution, such as split buckets by the prefix
length or domain knowledge from logs.

5.2 Challenges in predictive pipeline efficiency

Preprocessing the event log is one of the significant part in benchmark. While experiments
in this thesis only did some essential actions, it still takes amount of time for processing
all seven logs. Typically, Pandas and Numpy libraries in Python are most common way
to process the event logs in the previous research because of the convenience of the built-
in functions, like debugging process. However, the performance of them will drop down
dramatically when dealing with large real-life logs. For example, it takes more than 24
hours to generate all trace prefixes for BPIC2018 by Python. Hence, this benchmark
applied Structure Query Language for improving the efficiency of processing event logs.
Despite the fact that SQL requires extra software and code than Python, it is reasonable
to trade convenience for efficiency.

Another possible challenges is that the LSTM models used in this benchmark requires
a large amount of the computation costs to build, compile and train neural networks.
The three LSTM models in architectures have a slightly difference in number of total
LSTM layers. For example, specialised model requires three LSTMα layers and three
LSTMβ layers, and full shared model only requires one LSTMα layer and three LSTMβ
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layers. Hence, the efficiency of each LSTM model should also be taken into consideration
if possible.
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6 Conclusions

This thesis is aimed to explore the impact of event log on the performance of deep learning-
based business predictive models, and identify the potential key characteristics from event
logs. In Honours research, the experiments evaluated three LSTM architectures with dif-
ferent structures on seven real-life event logs from BPI Challenge. By analysing the results
from predicting next activity, next resource and next interval time, it can be concluded
that the characteristics of event logs have both positive and negative affects on the per-
formance of predictive models. Due to the limitation from the time and computation cost
in Honours research, the research was limited to some event log characteristics from the
statistics of logs. Some further research is needed for discover and investigate more key
characteristics in event logs.

The further work should seek to decouple the complex real-life event logs into subgroups
by domain knowledge or techniques from data science, such as bucketing. It will bene-
fit for finding more realistic and accurate characteristics in event logs. In addition, the
benchmark in this thesis was limited to three LSTM-based models and some up-to-date ar-
chitectures were not considered in the experiment. It is worth to expand the scope of deep
learning models in predicting business processes. For example, the impact of attention
layers has received considerable critical attention in researches [11, 31]. Also, besides the
RNN-based model, other deep learning techniques, like Transformer [5] and convolutional
neural networks [2], can take into consideration. Ultimately, based on the experiments on
enough event logs and predictive models, a business process predictive recommendation
system can be created for providing information to select suitable bucketing methods,
encoding methods and predictive models by analysing the provided event log.
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